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Computational Complexity

1 The attention layer has N i/p tokens and N o/p tokens, each of D
dimensions

2 The overall dimension of i/p (or, o/p) is N.D
3 If we used a single fully-connected layer

Will have O(N2.D2) independent parameters
Computational cost for one forward pass: O(N2.D2)
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Computational Complexity

1 In an attention layer, W (Q), W (K), W (V ) are shared across all the i/p
tokens

2 → No. of in independent parameters is O(D2) (Dv ≈ Dk ≈ D)
3 For the N i/p tokens

No. of computations required for computing the dot products in
self-attention layer O(N2.D)

4 Subsequent Neural Network layer has D inputs and D outputs →
parameter = O(D2) and computational cost of O(N.D2)
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Positional Encoding

1 The weights (W (Q), W (K), W (V )) are shared across the i/p tokens →
Transformer is permutation invariant

2 Strong limitation to processing the sequential data
3 CSK plays better, not MI vs. MI plays better, not CSK
4 We need a way to inject the order information
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Positional Encoding

1 Without disturbing the design of the transformer, we may encode the
position information (rn) along with the data (tokens) (xn)

2 Obvious way is to concatenate

Increased dimensions and computations

3 Instead, add them x̃n = xn + rn
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Positional Encoding

1 Would it not corrupt the data?

High dimensionality keeps them separate
Skip connections retain the rn across the layers
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Positional Encoding

The Bishop’s book
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Positional Encoding

Credits: Jay Alammar
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https://jalammar.github.io/illustrated-transformer/


Residuals in the Encoder

Credits: Jay Alammar
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Residuals in the Encoder

Credits: Jay Alammar
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Tranformer-Decoder

Credits: Jay Alammar
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Transformer-Decoder

1 Self-attention here works in a slightly different way → masks the
future positions

2 Uses the top encoder’s K and V vectors for its’ encoder-decoder
(cross) attention

3 Encoder-decoder attention layer borrows the queries from the layer
below it
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