

Deep Learning

15 Self-Attention & Transformers - II

Dr. Konda Reddy Mopuri Dept. of Al, IIT Hyderabad Jan-May 2025

0 The attention layer has N i/p tokens and N o/p tokens, each of D dimensions

- (1) The attention layer has $N \ {\rm i/p}$ tokens and $N \ {\rm o/p}$ tokens, each of D dimensions
- 2 The overall dimension of i/p (or, o/p) is N.D

- (1) The attention layer has $N \ {\rm i/p}$ tokens and $N \ {\rm o/p}$ tokens, each of D dimensions
- 2 The overall dimension of i/p (or, o/p) is N.D
- If we used a single fully-connected layer

- (1) The attention layer has $N \ {\rm i/p}$ tokens and $N \ {\rm o/p}$ tokens, each of D dimensions
- 2 The overall dimension of i/p (or, o/p) is N.D
- If we used a single fully-connected layer
 Will have O(N².D²) independent parameters

- (1) The attention layer has $N \ {\rm i/p}$ tokens and $N \ {\rm o/p}$ tokens, each of D dimensions
- 2 The overall dimension of i/p (or, o/p) is N.D
- If we used a single fully-connected layer
 - ${\ {\rm \circ }}\ {\rm Will}$ have ${\mathcal O}(N^2.D^2)$ independent parameters
 - $\,\circ\,$ Computational cost for one forward pass: $\mathcal{O}(N^2.D^2)$

1 In an attention layer, $W^{(Q)}, W^{(K)}, W^{(V)}$ are shared across all the i/p tokens

- 1 In an attention layer, $W^{(Q)}, W^{(K)}, W^{(V)}$ are shared across all the i/p tokens
- $2 \rightarrow No.$ of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$

- 1 In an attention layer, $W^{(Q)}, W^{(K)}, W^{(V)}$ are shared across all the i/p tokens
- $\bigcirc \rightarrow$ No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- ③ For the N i/p tokens

- 1 In an attention layer, $W^{(Q)}, W^{(K)}, W^{(V)}$ are shared across all the i/p tokens
- $\bigcirc \rightarrow$ No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- ③ For the N i/p tokens
 - $\, \bullet \,$ No. of computations required for computing the dot products in self-attention layer $\mathcal{O}(N^2.D)$

- 1 In an attention layer, $W^{(Q)}, W^{(K)}, W^{(V)}$ are shared across all the i/p tokens
- $2 \rightarrow No.$ of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- ③ For the N i/p tokens
 - $\bullet\,$ No. of computations required for computing the dot products in self-attention layer $\mathcal{O}(N^2.D)$
- ④ Subsequent Neural Network layer has D inputs and D outputs → parameter = $O(D^2)$ and computational cost of $O(N.D^2)$

1 The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \rightarrow Transformer is permutation invariant

- 0 The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \rightarrow Transformer is permutation invariant
- ② Strong limitation to processing the sequential data

- 0 The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \rightarrow Transformer is permutation invariant
- ② Strong limitation to processing the sequential data
- 3 CSK plays better, not MI vs. MI plays better, not CSK

- 0 The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \rightarrow Transformer is permutation invariant
- ② Strong limitation to processing the sequential data
- 3 CSK plays better, not MI vs. MI plays better, not CSK
- We need a way to inject the order information

(1) Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)

- **1** Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- ② Obvious way is to concatenate

- **1** Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- ② Obvious way is to concatenate
 - Increased dimensions and computations

- **1** Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- ② Obvious way is to concatenate
 - Increased dimensions and computations
- (3) Instead, add them $\tilde{x_n} = x_n + r_n$

Would it not corrupt the data?

Would it not corrupt the data?

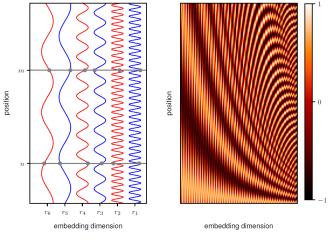
• High dimensionality keeps them separate

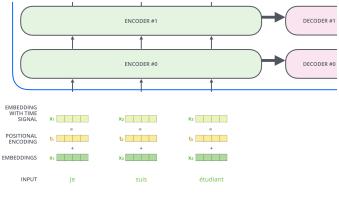
Would it not corrupt the data?

- High dimensionality keeps them separate
- ${\ensuremath{\, \circ }}$ Skip connections retain the r_n across the layers

$$r_{ni} = \begin{cases} \sin\left(\frac{n}{L^{i/D}}\right), & \text{if } i \text{ is even,} \\ \\ \cos\left(\frac{n}{L^{(i-1)/D}}\right), & \text{if } i \text{ is odd.} \end{cases}$$

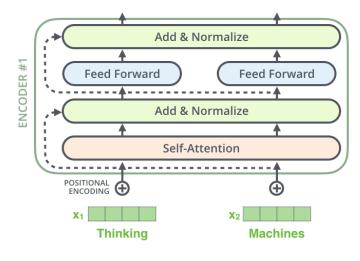
The Bishop's book





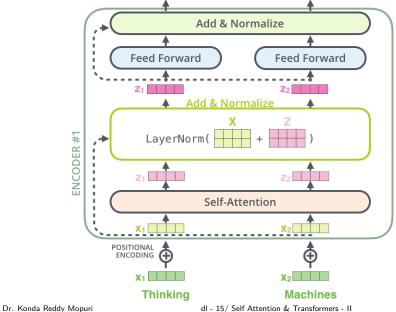
Credits: Jay Alammar

Residuals in the Encoder

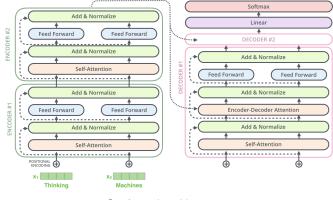


Credits: Jay Alammar

Residuals in the Encoder



Tranformer-Decoder



Credits: Jay Alammar

Transformer-Decoder

0 Self-attention here works in a slightly different way \rightarrow masks the future positions

Transformer-Decoder

- 0 Self-attention here works in a slightly different way \rightarrow masks the future positions
- ② Uses the top encoder's K and V vectors for its' encoder-decoder (cross) attention

Transformer-Decoder

- $\textcircled{\sc 0}$ Self-attention here works in a slightly different way \rightarrow masks the future positions
- ② Uses the top encoder's K and V vectors for its' encoder-decoder (cross) attention
- 3 Encoder-decoder attention layer borrows the queries from the layer below it